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Under arbitrary rotations and deformations subject to the condition of inextensibility 
of the transverse fibers, the three-dimensional nonlinear problem of shell deformation is 
reduced to a two-dimensional problem of the deformation of its basis surface. 

The formulated two-dimensional problem requires the insertion of five contour boundary 
conditions. The nonlinear model it describes for a deformable surface differs from the 
Cosserat model by the absence of transverse components for the internal moment tensor. 

The notation used in [i] is conserved in the elucidation of the material. The Boldface 
capitals take on the values i, 2, and 3, while those which are not bold take on the values 1 
and 2. 

i. Shells as a Three-Dimensional Membrane Continuum 

Let the continuum forming the shell be a membrane, and occupy a three-dimensional do- 
main (volume) B with boundary (surface) C in the initial instant (prior to deformation). 
This domain is parametrized by Lagrange coordinates t N with basis A(M)(tN). 

Continuous transformation of the initial basis into the instantaneous basis A(M)(tN) 
occurs during shell deformation (the possible time dependence is assumed but not mentioned 
explicitly). The rigid rotation of the initial basis, which converts it into a rotated ba- 
sis A[M](tN) , iS extracted from the complete transformation. 

The transformation of the rigid rotation is expressed in terms of the vector field of 
rotations v(tN) by the mutually reciprocal Rodriguez formulas 

A[N] .... A(N) + (I/F)V• (I/2)V • A(N)), (i.i) 

A(N)=: A t N ] -  (I/F)V x(AtN] --  (t/2)V • ArN]), F : =  l+ ( l / 4 )V .V  

(the author made a misprint in the corresponding formulas in [i]). 

The field of rotations conserves the initial metric of the shell, performing only 
flexures of the lines and surfaces immersed therein. The tensor field VIM] ~:= (I/F)(VM V + (I/2)u 
• VM V) = V[MN] A iN] (VM is the partial differentiation operator with respect to t M) is 
a measure of these flexures. 

The covariant derivatives of the vectors of the rotated basis V(M)AtN] VIM] • A[N] (V(M) 
is the operator of covarlant differentiation with respect to tM in the initialbasis) are 
determined in terms of the flexure tensor. 

Transformation of the rotated basis into an instantaneous basis generates a tensor 
deformation field 

UIM ] = A(M)-- A[M ] = UtMN] A ix]. (1.2) 

If U(tN) is a certain displacement field, then by definition the equality 

A ~  = Ac~ ) + vmU ( l .  3) 

is valid, and 

UtM ] = V~U + A ~ )  - -  Atmj, ( 1 . 4 )  

follows from (1.2), which in combination with (i.i) determines the deformation field in 
terms of the field of displacements and rotations. 

The following variational rules hold for the kinematic fields of the shell (Vo is the 
variation operation): 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
i, pp. 163-167, January-February, 1982. Original article submitted March 16, 1981. 

154 0021-8944/82/2301- 0154507.50 �9 1982 Plenum Publishing Corporation 



v,AtM ] Vo /- AiM I. VMVo ~ VOVIMNI A- ['~'l, Uo -- Vox 

Vo : (I/F)(VoV-~ (I/2)V'< voV), Uo = Vo U. 

The densities, determined in the domain B and referred to its initial metric, for the 
fields of volume forces F(tN) and stresses X<~1)(tN) are subject to local (static or dynamic) 
equations 

V(M) X (M) ~ F== 0, A.~M~X X (M)= 0. ( 1 . 5 )  

The second of these equations assures the symmetry of the two-basls stress tensor 
X(~Ii>~= X<~I). Am~ , and discloses the asymmetry of the two-basis tensor x (~NI= X (~). A INf. 

The condition 

[(A(v)'A(M)) X ( M ) -  P]'Uo = 0 ( 1 . 6 )  

is satisfied on the boundary of the domain, where P(t~) is the density defined on the surface 
C and referred to its initial metric for the surface force field, and A~v)(t N) is the field 
of normals to the surface C. 

The density Wo(t N) of the shell virtual strain energy is determined by any of the 
equalities W0=x(MN] voU[~N]=X(~I~}voU(MN~. Here U(MN)(tN) is the Green symmetric deformation 
tensor that is independent of the field of rotations: 

(M~--A(~I~ .A(x ~ A(3~)-A(N ) A(~) .vMU -~ A(M) -VN U + VMU'VNU ( i . 7 )  

=A[~ 1. U[M ] / A [ 3 , I - U t N  1-~- U[M l .U[~ i. 

The possibility of determining the virtual strain energy in terms of the symmetric 
tensors X( MN} and U(MN}, independent of the rigid rotation of the basis, means that such a 
rotation does not participate at all in the determination of the membrane continuum (is 
latent according to the Cosserat expression). Hence, the rotated basis is an arbitrary 
basis for the membrane continuum. The existing arbitrariness appears in the fact that the 
tensor is not generally symmetric. Any fixing of the rotated basis sets up three scalar 
couplings between the components of the tensor U[MN] and any three independent couplings 
attached to the tensor U[MN] fix the location of the rotated basis. The most natural 
couplings are the symmetry conditions for this tensor: U[MN] = U[NM]. However, as will be 
seen from what follows, other conditions for fixing the rotated basis are more effective 
in constructing the shell model. 

For reversible isothermal and adiabatic processes, the shell strain can be determined / 

by the strain energy function W(U(MN} so that Wo= VoW x(MN}voU(MN}. The equations of a 
nonlinear elastic relation between symmetric stress and strain tensors (governing the equa- 
tions) hence follow: 

x ~MN~ = o w / o u ( ~ N ) . ,  (1.8) 

Equations for the coupling between the nonsymmetric tensors X( MN] and U[MN] ca~ be ob- 
tained as a corollary of these fundamental equations. The simplest method is to use the 
dependences xo ~L] = x(MN>AcN}'~% ILl following from the expansions X(M) = X <ML] AlL ] = X(~N>A(N~, 
which result in combination with (1.8) in the coupling equations 

"[L]ow/OU(MN}. (1.9) x(ML] = AiN).~ 

The derivatives of the potential function are assumed to be expressed here in terms of the 
nonsymmetric tensor U[MN] components by using (1.7). 

The governing equations (1.9) close the formulated system of kinematic and force equa- 
tions for a shell as a three-dimensional membrane continuum. 

2. Shells as a Two-Dimensional Membrane Continuum 

The shell mass distribution over points generating its (basis) surface give the latter 
the meaning of a two-dimensionalcontinuum. For the deformation of such a continuum to 
model the shell deformation, it should be considered couple-stress. The theory of the non- 
linear deformation of a two-dimensional couple-stress continuum can be obtained as a 
corollary of the theory of the three-dimensional couple-stress continuum [i]. 
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Let the initial spatial basis A<M ) be determined on a surface b with the boundaries 
(contour) c. Since the surface is parametrized by two internal coordinates tl and t2, 
A(M ) = a(M)(tn). By definition a(m)(t,) is the basis of the internal coordinate system, and 
a(s)(Zn) is the basis vector normal to the surface. Consequently, the vectors of the two- 
dimensional initial basis a(~t) are interrelated by orthogonality conditions 

a(~ 0 .a(3 ) =0. (2.1) 

The surface deformation transforms the initial into an instantaneous basis a(M}(t~) 
(the possible time dependence is assumed, but not mentioned explicitly). The rigid rotation 
of the initial basis, carrying it over into the rotated basis a r3z]{t,~ , is extracted from this 
complete transformation. Transformation of the rotation is expressed in terms of the vector 
field of rotations v(tn) by the formulas 

a [ x  ] = a(~-)-!- ( I / / )v  • (a(.~.)-!- (l /21v "< a(.~)), (2.2) 

a(~,-) ~ a [ N  ] - -  (1,r'/)V X (eq['~-] - -  ( l /2 )v  "< a f~]L  / := i -~ ( I ' i ) v  v 

and is subject to the conditions 

a [Ml ' a [N]  = a(~t) .a(N) = aMN, 

a[L] '  (aiM] >< a[:x- 1) = a(L ) �9 (a(3t) • a (x  )) ---- dLM_N ' 

so that aMN is the metric, and dLM N are the discriminant tensors of the initial and ro- 
tated bases simultaneously. 

Exactly as the three-dimensional bases .). AIM ] , and A~t~ are degenerate on the surface 
b into the two-dimensional bases a~ o, aim ] , and a{~1~, all the three-dimensional fields intro- 
duced in [I] degenerate into two-dimensional fields denoted by the appropriate italic 
letters: u(t~.i is the displacement field, vU3 is the rotation field, u[M](t~) is the metric 
deformation field, v[M](t ~) is the flexure field, x(~)(t~) and y(M)(tn) are linear densities of 
the internal force and moment fields, p(t~) and q(t,,) are linear densities of the contour 
force and moment fields, f(t~) and g(tn) are the densities of the surface (including inertial) 
force and moment fields. 

Since the sections of the two-dimensional continuum are lines belonging to the surface 
b (in particular, coordinate lines), it can perceive the external effects only because of 
the internal strains and stresses determined on these lines. Consequently the closed two- 
dimensional continuum should be subjected to the additional constraints 

u[3 ] = 0, v[:~] -= 0, x (3) =-~ 0, )(~) = 0, ( 2 . 3 )  

A corollary of the first constraint is the equality a{a } = a[31, meaning that during de- 
formation the normal vector performs just rigid rotation by remaining nondeformable. The 
two remaining vectors of the instantaneous basis do not agree with the corresponding vectors 
of the rotated basis in the general case. Moreover, if the vectors of the rotated basis are 
subject to orthogonality conditions of the form (2.1), then these conditions are not satis- 
fied for vectors of the instantaneous basis in the general case. It follows from the se- 
quential chain of equalities a(m}'a~3 ~ = (a[~] + U[m]).a[3 ] = U[m ] :a[3 ] that the orthogonality condi- 
tions of the form (2.1) for the instantaneous basis are satisfied only in the absence of 
normal components for the vectors 

The operations of reducing the dimensionality and subjecting the equations of the 
three-dimensional couple-stress continuum to the constraints (2.3) [i] result in a closed 
system of deformation equations for a two-dimensional couple-stress continuum. It is formed 
by the following groups of equations. 

I. Kinematic equations determining the tensorial flexure and deformation fields in 
terms of the independent vector displacement and rotation fields: 

T !9 - u[m] z~[m:~. ] a [-~,1 = a{m } -- aim ] = :  VraU -- (l'/)v • ) n (I-)~ • a(m )) (2.4) 

. . . .  ( l ) ( v , , J  =- VmU (1//)v >,~ (aim ] ( t /2 )v  X a[m]), vt-m] r[ , :N] a[N] 1/ 

-4- (1/2)v X VraV). 

The continuity conditions (strain compatibility conditions) of a two-dimensional con- 
tinuum 
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are a corollary of (2.4) (V(m) is the operator of :ovarian: differentiation with respect 
to t m in the initial basis a(M). 

The covarlant derivatives of the vectors of the rotated basis are evaluated by the 
rule v{~) a[N] == v[,~]x a[N ] by the equalities to be determined 

Vt~0a[n I = vma[n] -- c!n,~a[1] q- bmna[3]' V{m)a[3] = vma[3]-- bm~afn] (2 �9 5) 

The Clmn. in (2.5) are the Chrlstoffel internal coordinate system of the second kind for a 
surface, and b=n = a{,ov,~a(3 ) is the tensor of initial surface curvature. 

2. Force (static and dynamic) equations relating the tensor internal force and moment 
fields: 

v ~ }  ~m} + f = o, v(~) ~ )  ~ a{~} • x (~) i g =-o. ( 2 . 6 )  

3. Conditions on the boundary contour c~ 

I(a{v}'a(m}}x{~}-- p ] ' ~  = 0 ,  I(a{~)-a(m})y ~m} -- q l ' ~  = 0 ( 2 . 7 )  

{a(v){tn) is the field of unit normals to the contour tangent to the surface b, and u(t,,) and 
v,{t~) are the virtual displacement and rotation fields). 

4. The expression for the surface density wo(tn) of the virtual strain energy and the 
governing equations for the reversible isothermal and adiabatic strain processes of a two- 
dimensional continuum: 

Wo = z ( m N ]  VoUimN ] + y(mN] Vo~[~N], (2.8) 
w o = Vo w , w = w(u[mN], V[mN]), x (toNI == Ow/OU[mN] ' y(mN] = OW/OV[mN]. 

The nonlinear model of a two-dimensional couple-stress continuum formed by (2.4) and 
(2.6)-(2.8) agrees with the Cosserat model presented in [2]. The two-dimensional continuum 
described by this model is called a Cosserat surface. 

In such a formal construction of the model of a two-dimensional couple-stress con- 
tinuum, its correspondence :o :he problem of shell deformation as a real three-dimensional 
body remains undisclosed. 

3. Shells as a Three-Dimensional Membrane Continuum 

with Nondeformable Fibers 

The specifics of shells permits the insertion of a spatial coordinate system t N 
associated with the basis surface b immersed therein. The parameters t, and t= are defined 
as internal coordinates of this surface, while the parameter ts is defined as the normal 
coordinate. 

Two initial bases, the three dimensional-basis A(M)(tN), defined in the whole volume of 
the shell, and the two-dimensional basis a{M)(tn), defined on the basis surface, are set in 
correspondence to the coordinate system introduced in this manner. By the definition of 
the shells, these bases are interrelated by the equalities 

A(m) = ( a m n +  bmnta)a(n) '  A { 3 ) =  a<3)" ( 3 . 1 )  

The shell deformation converts the initial basis into the corresponding instantaneous 
bases A(M}(tN~ and a(M}(t,). The rigid rotation generating the rotated bases A[M](t N) and 
a[M](t~) is extracted from their complete transformation. The arbitrariness allowable here 
permits expression of the rotation of both bases in terms of a two-dlmensional field of 
rotations v(t~) by formulas of the form (i.I) and (2.2). Consequently, constraints of the 
form (3.1) 

Aim] = (amn @ bm~ta)a[n]' A[ 31 = a[ 3] ( 3 . 2 )  

are conserved between the rotated bases. 

Moreover, the metric and discriminant tensors of the rotated bases agree with the 
corresponding tensors of the initial bases. 

To match the theory of Cosserat surfaces elucidated in the previous section, the shell 
deformation is subjected to the kinematic constraint 
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A(3} = ao]' (3.3) 

which means that the transverse shel l  f ibers are not deformed but only perform r ig id  rota- 
t ion. 

The chain of equalities A(3 ~ = A[31 = a{3 } -at3 ] is a corollary of (3.2) and (3.3). 

A linear distribution with respect to the normal coordinate of the field of shell dis- 
placements 

U = u ~- (a[3 ] -- a(3))t 3 

is set up as a result of integrating the equation va U--a[3]- a(3) 
and ( 3 . 3 ) .  

T h e n  t h e  s h e l l  d e f o r m a t i o n  f i e l d  

U[3 ] =__ O, U[m ] ---- u[m ] 'Z" v[m ] X a[3 ! t o (3.5) 

corresponding to the distribution (3.4) is determined by means of (1.4). Here "{ml and v~m 1 
are the tensor strain fields of the basis surface defined by Eqs. (2.4). 

The variational equalities 

+ F ) . %  + �9 Vo] B = ( 3 . 6 )  

--Wo) db + ( (p-u o -}- q-Vo) dc == O, 

which have the meaning of the principle of virtual shell displacements, yield two-dimen- 
sional force equations of the form (2.6) defined on the basis surface, boundary conditions 
of the form (2.7) defined on its contour, and an expression for the surface density of the 
virtual strain energy of the form 

% =_ ~ Woat ~ = ~("mVo%.m + ~("-~ Vo,~E..~v (3 .7 )  

Moreover, Eqs. (3.6) disclose the meaning of the two-dimensional force fields as three- 
dimensional fields averaged over the shell thickness: 

= i ~PSdta, (3.8) X'.'n) =-~fX!m)a"d '3 ,  y(m)= a[3 ] ~-ffX(")Jt3dt3, p -~ 

q = a [ 3 ] X ' T y P J t a d t a ,  f =  /t.--f[FJ - "~v3(X( ' )ar ) ]d t r  g=aI31•  

(j = j(tn) is the Jacobian of the basis a(N ), J = J(t N) is the Jacobian of the basis A(x ), 
and for simplicity the limits of integration in the variable t, are omitted). 

For the known coupling equations (1.9) between'the three-dimensional stress X (M) and 
strain U[M ] fields, the upper Eqs. (3.8) also have the meaning of governing equations of a 
two-dimefisional continuum. In fact, Eqs. (3.5) express the three-dimensional strain field 
U[M ] in terms of the two-dimensional fields U[M] and vim ] The three-dimensional stress 
field X (M) and the two-dimensional force field x(m), y(m) are expressed in terms of these two- 
dimensional fields by means of (1.9) and (3.8). 

The equalities following from the definition of the vectors .v (m), p, and g 

y(m).a[3 ] -- O! q.a[3 ] : O, g.a[3 ] = 0 ( 3 . 9 )  

indicate that the vector internal and external moment fields in the rotated basis are two- 
component fields. 

Equations (3.9) are additional conditions that distinguish the closed system of equa- 
tions of basis surface deformation immersed in the three-dimensional membrane continuum with 
the kinematic constraint (3.3) from the model of the Cosserat deformable surface. In the 
latter model, besides the ordinary "shell" moments that are a result of averaging the 
stresses over the shell thickness, there are still normal moments y(m3] = >(~) a[3] generated 
by the local couple-stress of the two-dimensional continuum. These moments perform work on 
the increments of the normal components v[~,~]=v[~] a[3 ~ of the flexure tensor. 

(3.4) 

following from (1.3), (3.1), 
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Thedifferential order of the system of equations of the deformable Cosserat surface 
formulated in the preceding section is twelve, and boundary conditions (2.7) are formulated 
for it by six scalar equations. Subjecting this system of constraints (3.9) reduces its 
order to ten, and reduces the number of scalar boundary conditions to five. Precisely such 
a number of resultant force factors occurs in reducing the forces distributed over the 
boundary section of the shell to the basis surface. 

Summarizing, it can be asserted that the kinematics of the basis surface in a con- 
tinuum-shell with constraint (3.3)is identical to the kinematics of the Cosserat surface, 
while the statics (dynamics) is distinct because of additional constraints (3.9). Mean- 
while, the model of the shell as a three-dimensional membrane continuum subjected to kine- 
matic constraint (3.3) includes not only the system of two-dimensional equations describing 
the deformation of the basis surface but also the three-dimensional equations (3.5), (3.4), 
(1.9), (1.6), and (1.5) which permit construction of the three-dimensional problem for a 
shell by means of the solution of the two-dimensional problem for a surface. Consequently , 
the model of a shell as a three-dimensional membrane continuum with nondeformable trans- 
verse fibers is richer in content than the model of a two-dimensional couple-stress con- 
tinuum. 

Subjecting the model constructed here for a shell to the additional kinematic con- 
straint u~la[3 ] = 0 transforms it into a nonlinear Kirchhoff model [3]. 
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